Data Quality Management

From apppm
(Difference between revisions)
Jump to: navigation, search
(Abstract)
(Abstract)
Line 2: Line 2:
  
 
Data quality management (DQM) serves the objective of continuously improving the quality of data relevant to an organisation, program or project<ref>Page 3, 2014 ed. Building a Successful Data Quality Management Program, Knowledgent</ref>. However, it is important to understand that DQM is not about simply improving data quality in the interest of having high quality data, but rather to achieve desired outcomes and support decision makers who rely upon high-quality data insight<ref>Page 3, 2014 ed. Building a Successful Data Quality Management Program, Knowledgent</ref>.  
 
Data quality management (DQM) serves the objective of continuously improving the quality of data relevant to an organisation, program or project<ref>Page 3, 2014 ed. Building a Successful Data Quality Management Program, Knowledgent</ref>. However, it is important to understand that DQM is not about simply improving data quality in the interest of having high quality data, but rather to achieve desired outcomes and support decision makers who rely upon high-quality data insight<ref>Page 3, 2014 ed. Building a Successful Data Quality Management Program, Knowledgent</ref>.  
 +
 +
----
  
 
As part of the digital transformation, data has become more readily available and more important than ever before. Organisations are performing data analytics to leverage key resources and optimise processes to gain a competitive advantage. As such, data is becomingly increasingly valuable to project and program managers who are driving decision making based on data insight. The value of the data is highly reflected by the quality of the data. If the data quality is poor, managers risk taking misguided decisions based on unreliable data. Therefore, it is imperative that a proper data quality management system is in place to ensure data of the highest quality.
 
As part of the digital transformation, data has become more readily available and more important than ever before. Organisations are performing data analytics to leverage key resources and optimise processes to gain a competitive advantage. As such, data is becomingly increasingly valuable to project and program managers who are driving decision making based on data insight. The value of the data is highly reflected by the quality of the data. If the data quality is poor, managers risk taking misguided decisions based on unreliable data. Therefore, it is imperative that a proper data quality management system is in place to ensure data of the highest quality.

Revision as of 22:08, 17 February 2018

Contents

Abstract

Data quality management (DQM) serves the objective of continuously improving the quality of data relevant to an organisation, program or project[1]. However, it is important to understand that DQM is not about simply improving data quality in the interest of having high quality data, but rather to achieve desired outcomes and support decision makers who rely upon high-quality data insight[2].


As part of the digital transformation, data has become more readily available and more important than ever before. Organisations are performing data analytics to leverage key resources and optimise processes to gain a competitive advantage. As such, data is becomingly increasingly valuable to project and program managers who are driving decision making based on data insight. The value of the data is highly reflected by the quality of the data. If the data quality is poor, managers risk taking misguided decisions based on unreliable data. Therefore, it is imperative that a proper data quality management system is in place to ensure data of the highest quality.

Overview

DQM can be considered one of many building blocks to establishing a successful data governance program [3].

Data Quality

Measuring and Defining Data Quality

Insert Diagram! Completeness Accuracy Validity Consistency Integrity Timeliness

Framework: Data Quality Life Cycle

Insert Diagram!

Quality Management

ISO 9001, reasons and benefits of implementing a quality management system

Fundamental Principles of Data Quality Management

Explain each principle

Three Pillars of DQM

People
Process
Improvement

ISO 8000 Framework for DQM

Structure and Components of the DQM Framework

Glossary

DQM: Data Quality Management //ISO: International Organisation for Standardization

References

  1. Page 3, 2014 ed. Building a Successful Data Quality Management Program, Knowledgent
  2. Page 3, 2014 ed. Building a Successful Data Quality Management Program, Knowledgent
  3. Page 3, 2014 ed. Building a Successful Data Quality Management Program, Knowledgent

Bibliography

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox