Fishbone diagram for root cause analysis

From apppm
(Difference between revisions)
Jump to: navigation, search
Line 20: Line 20:
 
The risk management process includes the following four activities [7]:
 
The risk management process includes the following four activities [7]:
  
1. Identifying project risks – both existing and possible risks <br>
+
'''1. Identifying project risks – both existing and possible risks <br>'''
 
The first step of the process is to identify the risks in the project. This is often done by brainstorming across the different stakeholders and by evaluating the components and milestones on a project, in order to identify possible risks. There are also tools that can be used to identify risks, one of which is the Fishbone diagram, which will be mentioned later in the article.  
 
The first step of the process is to identify the risks in the project. This is often done by brainstorming across the different stakeholders and by evaluating the components and milestones on a project, in order to identify possible risks. There are also tools that can be used to identify risks, one of which is the Fishbone diagram, which will be mentioned later in the article.  
  
2. Analyzing project risks
+
'''2. Analyzing project risks <br>'''
 
After the risks have been identified, they are analyzed in order to both understand the cause(s) and the possible impact of the risk. There are also several tools that can be used in this endeavor, one of which is the Fishbone diagram.  
 
After the risks have been identified, they are analyzed in order to both understand the cause(s) and the possible impact of the risk. There are also several tools that can be used in this endeavor, one of which is the Fishbone diagram.  
  
3. Definition and implementation of risk response actions
+
'''3. Definition and implementation of risk response actions <br>'''
 
Once the risks have been analyzed and evaluated, it is necessary to define and implement risk response actions in order to either eliminate or mitigate the negative impact of the risks. Not all risks can be eliminated due to the nature of risks and uncertainty; projects are often complex and consist of many different components resulting in several causes behind an effect instead of one root-cause, which is typically easier to deal with. The complexity of projects combined with the everlasting uncertainty throughout a project’s lifetime makes it difficult to eliminate risks completely. Therefore, the goal is often to mitigate the negative impact of risks instead.  
 
Once the risks have been analyzed and evaluated, it is necessary to define and implement risk response actions in order to either eliminate or mitigate the negative impact of the risks. Not all risks can be eliminated due to the nature of risks and uncertainty; projects are often complex and consist of many different components resulting in several causes behind an effect instead of one root-cause, which is typically easier to deal with. The complexity of projects combined with the everlasting uncertainty throughout a project’s lifetime makes it difficult to eliminate risks completely. Therefore, the goal is often to mitigate the negative impact of risks instead.  
  
4. Monitoring project risks
+
'''4. Monitoring project risks <br>'''
 
The last step is to monitor the project risks, which serves several purposes. First, it is necessary to monitor the risks throughout the entire project’s lifetime, as the risks identified in the previous steps can occur throughout the entire project. Therefore, the risks must be monitored in order to know when to execute the risk response actions determined in step three. Another reason to monitor the project risks is to monitor if the risks evolve. A certain risk that is identified at the start of the project lifecycle may change as the project proceeds and evolve from being a low-threat risk to a high-threat risk.  
 
The last step is to monitor the project risks, which serves several purposes. First, it is necessary to monitor the risks throughout the entire project’s lifetime, as the risks identified in the previous steps can occur throughout the entire project. Therefore, the risks must be monitored in order to know when to execute the risk response actions determined in step three. Another reason to monitor the project risks is to monitor if the risks evolve. A certain risk that is identified at the start of the project lifecycle may change as the project proceeds and evolve from being a low-threat risk to a high-threat risk.  
  
Line 36: Line 36:
  
  
Risk identification
+
 
 +
=== Risk identification ===
 +
 
 
The Fishbone diagram is a versatile tool and can be applied in many ways depending on purpose and context. One of the most common ways of using the Fishbone diagram is however to identify risks primarily, and to aid in the aforementioned four activities in risk management. Risk identification is the first activity in risk management, where the goal is to uncover the certainty in the project by identifying both existing and possible risks. This is an important first step, as it allows the project team to map potential threats to the project, analyze how they can arise, how big of a threat they are and finally, the risk response action, which details how to deal with the threat in the case of it materializing.  
 
The Fishbone diagram is a versatile tool and can be applied in many ways depending on purpose and context. One of the most common ways of using the Fishbone diagram is however to identify risks primarily, and to aid in the aforementioned four activities in risk management. Risk identification is the first activity in risk management, where the goal is to uncover the certainty in the project by identifying both existing and possible risks. This is an important first step, as it allows the project team to map potential threats to the project, analyze how they can arise, how big of a threat they are and finally, the risk response action, which details how to deal with the threat in the case of it materializing.  
  

Revision as of 23:17, 21 February 2021

by Ali Waleed Abbas

Uncertainty is an essential part of project management and is inevitable in both projects and organizations. Uncertainty is typically present during the entire lifetime of a project and is constantly changing as the project moves on. Dealing with uncertainty throughout the entire project is paramount in order to achieve the goals set for the project within scope, budget, time and quality constraints. In practice it is nearly impossible to eliminate uncertainty – instead, the goal should be to reduce uncertainty in the different project phases through effective risk management. One of the many different methods that can be of use in this endeavour is a root cause analysis, in which the Fishbone diagram can be utilized.

The Ishikawa diagram, also called Fishbone diagram, is a cause-and-effect tool that can be used to identify possible causes of a problem by looking into the different aspects of a given problem. The major benefit of this method is that it is a structured and organized approach to brainstorming and analyzing possible causes to a problem, which makes it a very valuable tool for not only risk identification, but also risk management in broader view. Besides identifying the risks, the Fishbone diagram can in some cases be utilized to solve problems and eliminate identified risks, which in return reduces the uncertainty in a project. The purpose of this article is to shine light upon the idea behind a Fishbone diagram, when it can be applied, how it can be applied and the practical limitations of the tool.



Contents

Introduction to uncertainty and risk

In order to fully understand the purpose and use-cases of the Fishbone diagram, it is important to know the importance of uncertainty management in projects, programs or portfolios, and why poor uncertainty management is often detrimental to their success. The article will mostly focus on uncertainty and risk in project management, although many of thoughts, methods and tools can be applied in program and portfolio management. Uncertainty management is sometimes so important that good project management practice can often be thought of as effective uncertainty management [1]. While the two terms uncertainty and risk are often thought to be the same and used interchangeably, they are two different terms [2]. The uncertainty in a project/program/portfolio is defined as relevant information regarding the outcome of a process or decision in the future is either not known, not definite or not reliable [3]. While on the other hand, risk is defined as the outcome or impact of this uncertain outcome [4]. The link between the two terms can be illustrated by saying that uncertainty is the lack of certainty throughout the project/program/portfolio management, and risk is the possible consequence of this uncertainty. Thus, effective risk management is key to effective uncertainty management, which in return is key to a successful project.

There are many ways of dealing with uncertainty, often depending on the type of project/program/portfolio. Most relevant to the Fishbone diagram is risk management and risk identification.


Risk management

Risk management describes the process of identifying, assessing and dealing with risks that occur throughout a project’s lifetime [5]. The aim of the risk management is not to eliminate existing and potential risks, as this is often impossible, but to limit the harmful impact of uncertain events and to reduce the likelihood of these events materializing [6]. As previously mentioned, these risks stem from the inherent uncertainty in the project. It is important to mention that risk management does not equal uncertainty management – instead, risk management is a branch within uncertainty management. The risk management process includes the following four activities [7]:

1. Identifying project risks – both existing and possible risks
The first step of the process is to identify the risks in the project. This is often done by brainstorming across the different stakeholders and by evaluating the components and milestones on a project, in order to identify possible risks. There are also tools that can be used to identify risks, one of which is the Fishbone diagram, which will be mentioned later in the article.

2. Analyzing project risks
After the risks have been identified, they are analyzed in order to both understand the cause(s) and the possible impact of the risk. There are also several tools that can be used in this endeavor, one of which is the Fishbone diagram.

3. Definition and implementation of risk response actions
Once the risks have been analyzed and evaluated, it is necessary to define and implement risk response actions in order to either eliminate or mitigate the negative impact of the risks. Not all risks can be eliminated due to the nature of risks and uncertainty; projects are often complex and consist of many different components resulting in several causes behind an effect instead of one root-cause, which is typically easier to deal with. The complexity of projects combined with the everlasting uncertainty throughout a project’s lifetime makes it difficult to eliminate risks completely. Therefore, the goal is often to mitigate the negative impact of risks instead.

4. Monitoring project risks
The last step is to monitor the project risks, which serves several purposes. First, it is necessary to monitor the risks throughout the entire project’s lifetime, as the risks identified in the previous steps can occur throughout the entire project. Therefore, the risks must be monitored in order to know when to execute the risk response actions determined in step three. Another reason to monitor the project risks is to monitor if the risks evolve. A certain risk that is identified at the start of the project lifecycle may change as the project proceeds and evolve from being a low-threat risk to a high-threat risk.

It is important to note that although the four above activities are to be performed at the very start of the project, they should be repeated throughout the different project phases in the entire project lifetime. Not all risks can be identified at the very start of the project, and in practice projects are often adjusted as they proceed in the phases. A lot of knowledge is also acquired throughout the project, which makes the project team more able to identify risks and deal with uncertainty. Furthermore, already identified risks can be adjusted, as risk response actions can be modified as the project proceeds.



Risk identification

The Fishbone diagram is a versatile tool and can be applied in many ways depending on purpose and context. One of the most common ways of using the Fishbone diagram is however to identify risks primarily, and to aid in the aforementioned four activities in risk management. Risk identification is the first activity in risk management, where the goal is to uncover the certainty in the project by identifying both existing and possible risks. This is an important first step, as it allows the project team to map potential threats to the project, analyze how they can arise, how big of a threat they are and finally, the risk response action, which details how to deal with the threat in the case of it materializing.

The risk identification process can be carried out in many ways, and there is not a fixed method or tool to use. There are many useful tools, one of which is the Fishbone diagram. In regards to risk identification, the Fishbone diagram for a root-cause analysis, which seeks to analyze a given problem and the underlying root-cause [8]. In large-scale and complex projects, it is seldom possible to find one single root-cause due to the complexity of the project, and often there are several causes behind a problem or a challenge.


Fishbone diagram

Application of Fishbone diagram

Limitations of Fishbone diagram

Annotated bibliography

Bibliography

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox