SWOT analysis for Prefabrication Housing Production

From apppm
(Difference between revisions)
Jump to: navigation, search
(Created page with "==Abstract== ''Factory parts' assembly of a prefabricated house'' The article focuses on Prefabricated Housing...")
 
(Abstract)
Line 4: Line 4:
 
The Prefabricated Process is a high performance  method, that highly increases the efficiency in building production. During the process of Prefabricated home, the design is done in collaboration between different partners, who have to develop their products using factory prefabrication methods. This is a total new concept in the building design. Despite the fact that researches and new instruments have been applied in this emerging industry, most of them need to be further improved.
 
The Prefabricated Process is a high performance  method, that highly increases the efficiency in building production. During the process of Prefabricated home, the design is done in collaboration between different partners, who have to develop their products using factory prefabrication methods. This is a total new concept in the building design. Despite the fact that researches and new instruments have been applied in this emerging industry, most of them need to be further improved.
 
The various experiences developed over the years show that,  It is a process where the different design teams (for example: structural engineers, architect, Building Services engineers, etc.) work closely in order to adapt the prefabrication process to a whole building. The design aspects are developed to raise quality and performance as possible. The Prefabrication Process increase in efficiency, both in economic and temporal terms. For all these reasons,  is it possible to say that, the building business is moving to new frontiers, namely: Prefabrication.
 
The various experiences developed over the years show that,  It is a process where the different design teams (for example: structural engineers, architect, Building Services engineers, etc.) work closely in order to adapt the prefabrication process to a whole building. The design aspects are developed to raise quality and performance as possible. The Prefabrication Process increase in efficiency, both in economic and temporal terms. For all these reasons,  is it possible to say that, the building business is moving to new frontiers, namely: Prefabrication.
 +
 +
==Process Management==
 +
The main concept is based on prefabrication process of building parts, but imagining them as small parts, which would later form a larger element. Each of these individual parts must be designed and built in the factory. When the all process is completed,  the finished product, will be an whole house, which has been assembled with the same production process that is used today in the automotive industry. Starting from this concept, this article explains how to apply to the industry of prefabricated houses, the production managing system used in automated factories. This is a hard concept, both to understand and to improve, because is not common in the building industry. Despite the various complications that can arise, producing prefabricated houses with the same industrial process used in the automotive industry, this is an example of innovative vision. There are already numerous prefabricated projects on the market, carried out by important industries in the sector. These companies are responsible for providing the customer with a complete home, built according to needs and requests. Therefore, for each individual project, the company will have to adapt its production each time according to the guidelines received. This article explains the idea based on allowing companies to mass-produce their own prefabricated houses. Once completed a comprehensive and exhaustive portfolio, customers will have to adapt their requests, depending on the products provided by the company. In the case analyzed, the final product will be the finished home, ready to use. Customers will be allowed to customize their home, according to their needs, choosing between the different parts. The company does not need to adapt their tools for each building, so it could use every time the same  production line. This method create a  double advantage for both the customer and the company.
 +
 +
Considering the Danish construction industry as example, a range of figures have called attention for improvement of competitiveness. In contemplating various initiatives to develop the industry’s practices, increased industrialization is currently receiving considerable attention throw efficiency to the potential benefit of both customers and the stakeholders carrying out construction work. Industrialization can find expression in among other things the factory-like production of system products to be implemented in buildings. These products have a certain appeal because they employ modular architectures which enable suppliers to achieve production wise advantages while also offering customers some variety and customization through individual configuration of the elements forming the products. This ongoing effort suggests that supplying system products to the construction industry and implementing them in building construction projects is not a straightforward matter; it may be associated with considerable managerial and practical challenges. A system product is a multi-technological complex part of a building, developed as a completed modular and variable product. The system is developed in a separate product development process based on the principles of integrated product "development for life cycle", which means preparation of its marketing, delivery process and servicing.
 +
"The system product is developed for mass customization and it is developed with a room for variation within which it can be configured and individualized for each construction work." <ref>[Mikkelsen et al. 2005: 20; Pine et al. 1995: 105] ''Managing system products: A case study of prefabricated building parts''</ref>.
 +
Examples of system products are integrated façade solutions, garrets, prefabricated kitchens, bathrooms and multi functional ceiling solutions. This definition builds on an understanding of “modularity” as the development of modules employing some common characteristics which can be varied in order to meet customers’ needs. The decomposition of products and the standardization of components’<ref>[Sanchez 2000: 614] ''Management Studies of the Building Process''</ref> interfaces is what theoretically enables modularity to ensure such individual solutions . Integrated product development means that developers make decisions which have consequences in the rest of the product’s life cycle. They therefore attempt to create a product which is appropriate in configuration, use and maintenance. Finally, the term “mass customization”, expresses an intent similar to modularity, namely to develop a product programme which matches different customers’ different needs and doing it in a cost-effective way by ensuring some common features in construction, production and installation.

Revision as of 12:17, 28 February 2019

Abstract

Factory parts' assembly of a prefabricated house
The article focuses on Prefabricated Housing Process explaining all the innovations and benefits, which this production method has brought into the estate market. In the past years, the most common method of building housing was the on-site method. The construction process starts with a project, which is developed by professionals and requires a certain amount of time to be completed. Once the final project is obtained and approved, is it possible to start with the building phase. The process required the set up of a construction site, which costs time and a large amount of money. The following phase is the construction operated on site, which is exposed to various risks that can be generated by the site environment, or from unpredictable events. The manpower cost is higher, because it must be highly specialized, and it has to adapt its knowledge depending on the site and the project to be implemented. Another significant economic impact on the buildings cost is generated by the transport of materials and the mechanical vehicles, needed in the construction process. With the advance of technology and the expansion of knowledge, many companies have finalized to the conclusion that the process of houses prefabrication is more efficient than the on-site construction.

The Prefabricated Process is a high performance method, that highly increases the efficiency in building production. During the process of Prefabricated home, the design is done in collaboration between different partners, who have to develop their products using factory prefabrication methods. This is a total new concept in the building design. Despite the fact that researches and new instruments have been applied in this emerging industry, most of them need to be further improved. The various experiences developed over the years show that, It is a process where the different design teams (for example: structural engineers, architect, Building Services engineers, etc.) work closely in order to adapt the prefabrication process to a whole building. The design aspects are developed to raise quality and performance as possible. The Prefabrication Process increase in efficiency, both in economic and temporal terms. For all these reasons, is it possible to say that, the building business is moving to new frontiers, namely: Prefabrication.

Process Management

The main concept is based on prefabrication process of building parts, but imagining them as small parts, which would later form a larger element. Each of these individual parts must be designed and built in the factory. When the all process is completed, the finished product, will be an whole house, which has been assembled with the same production process that is used today in the automotive industry. Starting from this concept, this article explains how to apply to the industry of prefabricated houses, the production managing system used in automated factories. This is a hard concept, both to understand and to improve, because is not common in the building industry. Despite the various complications that can arise, producing prefabricated houses with the same industrial process used in the automotive industry, this is an example of innovative vision. There are already numerous prefabricated projects on the market, carried out by important industries in the sector. These companies are responsible for providing the customer with a complete home, built according to needs and requests. Therefore, for each individual project, the company will have to adapt its production each time according to the guidelines received. This article explains the idea based on allowing companies to mass-produce their own prefabricated houses. Once completed a comprehensive and exhaustive portfolio, customers will have to adapt their requests, depending on the products provided by the company. In the case analyzed, the final product will be the finished home, ready to use. Customers will be allowed to customize their home, according to their needs, choosing between the different parts. The company does not need to adapt their tools for each building, so it could use every time the same production line. This method create a double advantage for both the customer and the company.

Considering the Danish construction industry as example, a range of figures have called attention for improvement of competitiveness. In contemplating various initiatives to develop the industry’s practices, increased industrialization is currently receiving considerable attention throw efficiency to the potential benefit of both customers and the stakeholders carrying out construction work. Industrialization can find expression in among other things the factory-like production of system products to be implemented in buildings. These products have a certain appeal because they employ modular architectures which enable suppliers to achieve production wise advantages while also offering customers some variety and customization through individual configuration of the elements forming the products. This ongoing effort suggests that supplying system products to the construction industry and implementing them in building construction projects is not a straightforward matter; it may be associated with considerable managerial and practical challenges. A system product is a multi-technological complex part of a building, developed as a completed modular and variable product. The system is developed in a separate product development process based on the principles of integrated product "development for life cycle", which means preparation of its marketing, delivery process and servicing. "The system product is developed for mass customization and it is developed with a room for variation within which it can be configured and individualized for each construction work." [1]. Examples of system products are integrated façade solutions, garrets, prefabricated kitchens, bathrooms and multi functional ceiling solutions. This definition builds on an understanding of “modularity” as the development of modules employing some common characteristics which can be varied in order to meet customers’ needs. The decomposition of products and the standardization of components’[2] interfaces is what theoretically enables modularity to ensure such individual solutions . Integrated product development means that developers make decisions which have consequences in the rest of the product’s life cycle. They therefore attempt to create a product which is appropriate in configuration, use and maintenance. Finally, the term “mass customization”, expresses an intent similar to modularity, namely to develop a product programme which matches different customers’ different needs and doing it in a cost-effective way by ensuring some common features in construction, production and installation.


Cite error: <ref> tags exist, but no <references/> tag was found
Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox