Risk Management in Renewable Energy Projects
Line 1: | Line 1: | ||
− | |||
The needed of introduce renewable energy in the grid system is a clear reality. Traditional energy sources like fossil fuels or nuclear energy carry complex risks which has been evaluated and optimized in the last decades. Meanwhile, renewable energy project outlines new risk that has to be taken into consideration. Some of these problems are not well address yet, increasing the uncertainty in some of these technologies. Wind energy is not total stable, for the discontinuity of the wind. Solar energy policies are not clear in many countries, changing continuously depending of the government. Or biomass energy, which addresses the shortage and supply chain problem. Risk is a key part of all these technologies and how to manage it is a challenge which is going to be faced for the global society in the following years. | The needed of introduce renewable energy in the grid system is a clear reality. Traditional energy sources like fossil fuels or nuclear energy carry complex risks which has been evaluated and optimized in the last decades. Meanwhile, renewable energy project outlines new risk that has to be taken into consideration. Some of these problems are not well address yet, increasing the uncertainty in some of these technologies. Wind energy is not total stable, for the discontinuity of the wind. Solar energy policies are not clear in many countries, changing continuously depending of the government. Or biomass energy, which addresses the shortage and supply chain problem. Risk is a key part of all these technologies and how to manage it is a challenge which is going to be faced for the global society in the following years. | ||
Revision as of 20:10, 7 February 2018
The needed of introduce renewable energy in the grid system is a clear reality. Traditional energy sources like fossil fuels or nuclear energy carry complex risks which has been evaluated and optimized in the last decades. Meanwhile, renewable energy project outlines new risk that has to be taken into consideration. Some of these problems are not well address yet, increasing the uncertainty in some of these technologies. Wind energy is not total stable, for the discontinuity of the wind. Solar energy policies are not clear in many countries, changing continuously depending of the government. Or biomass energy, which addresses the shortage and supply chain problem. Risk is a key part of all these technologies and how to manage it is a challenge which is going to be faced for the global society in the following years.
Contents |
Introduction
Energy sector is known for being complex and uncertain [1]. Energy market is changing continuously, appearing new products, tools, processes and policies [2]. Because of this, the risk is inherent and companies must take into consideration many factor and variables to decide which projects they are going to invest. Especially important is risk management in renewable energy projects where the horizon is larger and the amortization of the projects is a key factor [3]. In this article is discussed different attributes which have in common the different energetical technologies and the specific characteristics in the risk management of them.
Traditionally, fuel and nuclear industry has been the areas which higher risk. Fuel industry outline the exploration problem. Oil wells are not exactly localized and thousands of miles of dollars are spending every year to find new wells. The prospecting stages included desk-top studies, geological mapping, geochemical surveys, geophysical surveys and multi-client seismic surveys [4]; all of them without knowing if it will we find a well at the end. The financial risk is high, being the main reason why oil company agree venture to share the risk and the benefits. According to Deloitte [5], about a third of global oil and gas companies are at risk of insolvency. Bad decisions about how manage these risks has been fatal for companies like Canadian-listed Pacific Exploration & Production with $5.3 billion in debt in 2016 [6]. Another risk related to this resource are environmental, an example is the great disaster which happened in Spain in 2002 with Prestige sinking, with 11,000 tonnes of toxic fuel oil [7].
Nuclear technology has also numerous risk factors. Risk management in nuclear energy is different than risk management in fuel energy; in this case it is more important prevent from any fail than budget; due to the catastrophic consequences of an accident [8]. The two main risks are human health and policies. Nuclear energy is potentially dangerous. An accident could cause human loses, environmental catastrophes, inter alia. To avoid this the power stations has a strong security system which a lot of redundancy system and there are specific software packages who optimize the probability of accident. A nuclear accident is almost impossible that happen but the consequences would be terrible if it is not mitigated fast enough. Political risk is liked directly with the previous one. Because of its potential effects, public opinion does not feel comfortable with this type of power stations, tending to make a social amplification of the risk [9] [8]. As result, some governments have decided to close them; an example is Spanish nuclear park, which is being closed after a strong public opinion opposition [10].
Although non-renewable energy sources are an inherent risk source and should be managed carefully, this article is going to be focus on the renewable energy projects. Firstly, main considerations are addressed and risk analysis is presented. After that, different type of risks and risk sources are explained, stressing the evaluation and the response in order to mitigate them. In the following sections this article proposes a risk evaluation of three technologies, wind, solar and biomass energy. Finally, how all these risks are going to affect renewable industry in the next years is discussed.
Risk Management in Renewable Energy Projects
Type of risk
In renewable energy project several risks could be addressed. The most important are political and social, economical and environmental. Each of them has a different risk level and the mitigation tools vary.
- Political and social: society opinion could be determinant to decide in which technology invest. Generally, policies are linked with social tendencies. If a project is not accepted by the citizens, government could publish a law to set barrier to that technology facilitating the implementation of other. For instance, the USA elections in 2016 which faced Donald Trump, supported of oil and gas technologies and do not caring about climate change and Hillary Clinton, supported of renewable policies; Trump´s victory has brought a reduction in renewable projects in this country and companies has gone to invest in others [11].
- Economical and market: fifty years ago, renewable energies were not viable but the technological improvements in the last decades has become them viable or potentially viable. There are still some barriers which difficulties their entrance in the energy market. Economically there are mainly two barriers; high discount rates which creates a long-time amortization, impossible to fulfil for technologies like some of the solar ones or the Compressed Air Energy Storage (CAES), in these cases the best option to support them is government incentives in the first stages [12]. The second one is the high cost of the technologies due to they used to be new and firms have to buy or produce patents; a cost-reducing solution used to be the way to face this restriction. In the market barrier renewable projects have to face a restricted access to technology, for being not available or available at high cost because other companies have the patents stages [12]. This is the main reason why companies and government in this sector invest huge amount of money in R&D. Finally, the control of the energy sector. Energy is a key resource and governments and companies have a strong control over the pool. The entrance of new companies with news products probably is one of the worst attributes of the energy market, being not viable investment in some technologies. An example is the wind energy, windmills started to be highly used when governments and companies start to invest, reducing the cost, creating new power stations and introducing new policies.
- Environmental: it is highly discussed in the academic field if renewable energy is as good as used to say. Some author outline that they are completely clean because they used resources that are infinite so they will never run out of energy source; wind in wind energy or sun energy in solar energy are some examples. On the other hand, there are author that question this statement. In order to produce electric energy with these technologies are necessary other materials, like rare earths, that are extremely scarce. The use of these technologies could be limited not for the energy resource, as happen in non-renewable energies, but the materials needed to produce windmills and solar panels.
Evaluation of the risk
There are differences indicator to measure the risk stages [13]
- Safety:
- Environmental impact:
- Cost:
- Schedule:
- Quality:
Response to the risk
Depending of the type of risk, it should be used a type of strategy. In this section is outlined several mitigations alternatives for each risk presented.
Wind Energy
Solar Energy
Biomass Energy
Conclusion
A safe energy market is an objective in which governments along the world are working. Sustainable production, non-stop system, zero emission technologies or zero risk for human health production are some examples. The future is not clear and new technologies will shape for new policies.
References
- ↑ A. Eydeland and K.Wolyniec (2003). Energy and Power Risk Management. John Wiley & Sons, Inc., Hoboken, New Jersey
- ↑ C. Wing, J. Zhong (2014). Financing and risk management of renewable energy projects with a hybrid bond. Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
- ↑ C. Wing, J. Zhong (2014). Financing and risk management of renewable energy projects with a hybrid bond. Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
- ↑ Ministry of Business, Innovation and Employement of New Zealand https://www.nzpam.govt.nz/our-industry/nz-petroleum/phases/. Visited 07-02-2018
- ↑ Deloitte https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/risk-management-oil-gas-industry-weak-commodity-prices.html. Visited 07-02-2018
- ↑ Forbes https://www.forbes.com/sites/christopherhelman/2016/05/09/the-15-biggest-oil-bankruptcies-so-far/#4e410d317ff9. Visited 07-02-2018
- ↑ The Guardian https://www.theguardian.com/business/2002/dec/02/oil.spain. Visited 07-02-2018
- ↑ 8.0 8.1 Paul Slovic (1987). Perceived Risk, Trust, and Democracy. Decision Research. 1201 Oak Street Eugene, Oregon 97401
- ↑ Roger et al. (1998). The Social Amplification of Risk A Conceptual Framework. Risk Analysis, Vol. 8, No. 2, 1988.
- ↑ World Nuclear Organization http://www.world-nuclear.org/information-library/country-profiles/countries-o-s/spain.aspx. Visited 07-02-2018
- ↑ The Guardian https://www.nytimes.com/2017/06/06/climate/renewable-energy-push-is-strongest-in-the-reddest-states.html. Visited 07-02-2018
- ↑ 12.0 12.1 J.P. Painuly (2000). Barriers to renewable energy penetration; a framework for analysis. UNEP Collaborating Centre on Energy and Environment, Risø National Laboratory, Roskilde-4000, Denmark
- ↑ J. Michelez et al (2011). Risk Quantification and Risk Management in Renewable Energy Projects. Altran GMbH & Co.KG. Konstantin Graf. Veritaskai 3. 21079 Hamburg, Germany.
Annotated bibliography
- Reference 1:
- Reference 2:
- Reference 3:
- Reference 4:
- Reference 5: